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ABSTRACT 

Triviality of scalar field theories makes the naive version of spontaneous sym- 

metry breaking (SSB) questionable. We study whether the problem of triviality is 

removed by other sectors of a theory without a need for physical cutoffs (or embed- 

ding scales) in the large N limit. The problem for a similar situation with finite N 

can be understood BS being some deviation from the large N limit. This point of 

view shows the systematic of the problem in a nice way. In consequence the result 

can be used as an aid for understanding or avoiding such problems in other models. 

Additionally it is shown that the formal asymmetry of SSB where scalars are just 

needed to break the symmetry is removed. The right amount of gauge bosom and 

fermions is needed in balance to stabilize SSB. Upper bounds for fermion and Higgs 

masses arise naturally. 
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Spontaneous gauge symmetry breaking (SSB) is the best known way to obtain 

gauge boson masses without destroying gauge invariance or renormalizability. SSB 

can also be used to create fermion masses which arc forbidden by symmetry in the 

unbroken phase. To make SSB work the developement of a vacuum expectation 

value (VEV) of a scalar sector has to be used. This scalar part of the model is 

very much like a pure one component X@4 (A 2 0) theory which on the classical 

level seems to have no problem in taking a nonvanishing VEV if the mass term 

{lp2 h as a negative p2. On the quantum mechanical level, however, a pure scalar 

X%4 theory in d = 4 dimensions is probably only consistent if the theory is free, 

i.e. AR = 0 [1,2]. This so cnlled “triviality” would make the central part of SSB 

questionable as then nonvanishing VEV’s would not occur. 

The scalar sector is eventually coupled via covariant derivatives and exphcitely 

to other sectors of the full theory. One might hope that a quantum mechanical 

treatment of the full theory would remove the problem showing again a naive 

treatment. Since triviality is connected with the consistency of a renormalized 

+4 interaction, the strength of the effective G4 interactions induced by the other 

sectors is important. If the selfcoupling of the scalar sector is too strong, it seems to 

be justified to neglect other couplings for the moment and this brings the original 

triviality problem back. Therefore, if there is a rescue from the problem by other 

couplings at all there should exist upper bounds on X in terms of the other couplings. 

This paper addresses the question whether such a rescue from triviality by 

other couplings (and without a cutoff) occurs easily or only in special situations. 

We concentrate on models built in analogy with the standard model of electroweak 

interactions. The common properties of this question are studied in the large N 

limit of an N component scalar theory. The answer for finite N can be understood 

as a perturbation of the large N result and certain common features are under- 

stood very systematically this way. Especially, the importance of fermions is nicely 

exhibited this way. 

In a perturbative treatment, the known triviality of a X+4 theory would imply 

a true Landau singularity [3] of the effective coupling X(t) leading to inconsistencies 
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in the asymptotic scaling behavior of A(t) [2]. I n contrast a Landau singularity of 

a theory in a perturbative treatment is only a hint on possible triviality problems*. 

But knowing about the nonperturbative properties of a %’ theory one can use the 

perturbative behavior of the effective coupling X(t) to quantify results by using the 

perturbative Landau singularity. Observing both the very fast transition of X(t) 

from perturbative values to its pole (due to selfamplification) and the stability of 

the pole position under addition of arbitrary small higher order terms in the p- 

function one can conclude that the scale where X(t) gets strong is known rather 

precisely. Assuming that there is no fancy nonperturbative behaviour of A(t) on its 

way to the pole it is possible to make good quantitative statements**. The result 

is a relation between the initial value X(0) and the corresponding pole position Ap. 

Knowing that true Landau singularities are inconsistencies, a simple way out 

of the dilemma is to embed the current theory at a scale AE. All those situations 

where AE < Ap exists no longer have a triviality problem since new degrees of 

freedom replace X and @ beyond AE. 

Another idea which might remove the problem was the coupling to other sectors. 

In terms of Landau singularities, turning on couplings to other sectors would shift 

the pole position. Eventually it is possible to move the pole to infinity resulting 

in a nontrivial theory without the need of an embedding scale. As the mechanism 

works (if at all) only with sufficiently big additional couplings g2 it is possible to 

translate this into an upper bound on X(0) if s’(O) is lined. 

The combination of both ideas is also possible. This leads to modifications of 

the allowed range of X(0) for a given embedding scale AE when the additional cou- 

plings are turned on [4]. Because of the cutoff, the triviality problem can always 

be removed. But inventing an embedding scale requires new physics. Therefore 

the question whether, for a given theory the mechanism in which additional cou- 

* In fact, one has to take every Landau singularity as a possible inconsistency 
of the corresponding theory. 

** The agreement of computer simulations with this approach confirms this. 

3 



plings can remove the triviality problem works without any need for new physics is 

important. 

In this paper, this question is studied in the framework of the h expansion. 

We first start with an O(N) theory as an equivalent to the scalar sector of theories 

which make use of SSB and add other fields later. It is possible to sum up all 

diagrams contributing to the p-function in leading order of I&. The result should 

be more predictive than one loop results *. First we discuss a second O(N2) sector 

coupled to the original O(N) theory. Then we present the O(N) equivalent of SSB 

by gauging the group and eventually adding fermions. 

With the global interaction Lagrangian 

the p-function in the large N limit (to sIl orders of perturbation theory ) reads [5] 

@+E& x2; 
2 

t+n ; . 
( ) qo 

This result is very similar to the one component ip4 theory at one loop. 

The effective coupling becomes 

x(t) = 1 _ W) 
&w 

(3) 

with a Landau singularity at the scale t = 16x2 for every positive finite X(0) # 0 
m 

(vacuum stability excludes the case X(0) < 0). 

The fact that only X(0) = 0 leads to a consistent theory for all scales exactly 

as in the one loop treatment of a one component *4 theory has been used as an 

argument for triviality. Since the renormalization properties are the central point 

in triviality proofs, the summability of alI orders of perturbation theory seems 

to be more important than doing the calculation with finite N and low order of 

*The triviality of the large N limit was used as a pro triviality argument in this 
sense. 
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perturbation theory. We therefore study the shift of the Landau singularity of the 

O(N) theory in the large N limit when crosscouplings to other sectors are turned 

on. The aim is to shift the poles to higher scales beyond a high physical cutoff 

(which is eventually removed by taking it to infinity). In a first step we add a 

second O(N2) sector with a quartic selfcoupling X2 and a crosscoupling Xs (we 

rename ~5 s +1 here): 

LI = + (*1,a~~1,a)2 - ; (~2,6~2,b)2 - + (%,A,a) (@2,b92,b) (4) 

The corresponding p-function in the large N limit are 

dX1 - = & (NIX: + &A;) 
dt 

db -= 
dt & (NzX; + NIX:) 

db -= 
dt &X3 (NIXI + N2X2) 

We start with X3 = 0, where we have two decoupled O(N) theories. Without loss 

of generality we can assume that the pole t2 of $2 is at a higher scale than tl, the 

pole of Qil. As both sectors have a Landau singularity, we have to invent a cutoff 

equal to the lowest pole: 

tc,t I 11 . 63) 

To find out whether the crosscoupling of both sectors helps in shifting 11 to higher 

values we turn on X3 = s. As long as X3 is O(c), it is clear that the equations for 

X1 and X2 are modified by terms O(c’) only. Therefore, X1 will grow to stronger 

values first just as before. Once X1 becomes large, the terms of O(e2) are irrelevant 

and X1 starts to produce a pole. But with the growth of X1 the derivative of X3 gets 

big and therefore X3 will grow to sizable values. The feedback of the bigger values 

of X3 will cause X1 to grow even faster. But as the pole of X1 develops in a small 

scale range, the pole position is only mildly affected by this feedback mechanism. 

Most of the shift of the pole of X1 comes from the action of terms O(c’) in the 

range where X1 is small, shifting the onset of the pole slightly. 
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While the feedback of X3 has almost no effect on X1, the same mechanism has 

drastic outcomes for X2. The growth of X3 through the growth of X1 enters the 

equation for Xx and drives X2 to grow in the same scale axe&. Once X2 has become 

big around the same scale as the pole of X1 both the selfcoupling of X2 and the 

increase of X3 lead to a pole of X2 at the Landau singularity of X1. 

In summary, the Landau singularity of X1 is shifted very mildly by turning on 

the crosscoupling X3. On the other hand, the pole of X2 immediately collapses to 

the pole of X1. In addition, X3 is forced to produce a pole in the same area. All 

couplings are “trapped” by Xl’. 

Note that this mechanism would also occur if X2 had no triviality problem from 

the beginning. Therefore the addition of a second O(N2) sector does not help the 

triviality problem of the O(N1) theory. 

The essential point for this trapping to occur is of course the positive signs of 

all additional terms in the p-functions. Therefore, we can immediately see what is 

necessary to avoid the problem. There should be effective Q4 interactions with a rel- 

ative minus sign compared to the scalar fish diagram. On first glance, there appear 

two ways to achieve this. One possibility is the minus signs coming from fermion 

loops (statistics). The other possibility is an effective 94 interaction with one more 

propagator in the loop. This would typically correspond to such a diagram: 

We now proceed to gauge the O(N) theory and subsequently put in fermions 

in analogy with the standard model, and we will see how both possibilities produce 

the desired minus signs. But this is only a necessary condition for a rescue from 

triviality problems. We have to look at the details of the additional couplings. 

In the above discussion of a global O(N1) x O(N2) scalar field theory, we have 

shown that there exists a single Landau singularity instead of two because of the 

* A similar mechanism, in B different context, was discussed by Ref. [6]. 
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trapping mechanism. In the case of a gauged O(N) scalar field theory, there have 

been various works suggesting that a gauge theory might help evade the triviality 

problem. We wish to reexamine this question, having in mind possible contributions 

of light and/or heavy fermions to the scalar sector since this provides a systematic 

understanding of the general problem for every finite N. 

Let us first consider the case in which there are only one scalar multiplet ip and 

gauge bosons. The Lagrangian describing interactions among the scalars is given 

by eq. (4), but now with only one X. In the large N limit, the contribution of the 

gauge bosons to the renormalization group equation governing X gives [5] 

dX N 

x = 16n2 
-p-33xg2+$4 , 1 

for small X and g2. Combining with 

(9) 

where 

b. = 2 [;C2(G) - ;T(R)] 

for O(N) 

= 2[3N-2)-i] (11) 

with scalars in a vector representation, we obtain 

$2 = p(x) = -& 
[ 
x2 + bo i3Nx + ; 1 

= -& [x2 + BX + c] 
(12) 

where the transformation ,i z $- decouples the RGEs. 

If A = B2 -4C < 0 then there are no zeros of p(x) and, as the RHS of eq. (12) is 

always positive, A increases with increasing t. When X(t) > g2(t), the contribution 

of the gauge bosons to the scalar sector becomes ‘irrelevant and we are back to 

the same triviality problem encountered in a pure scalar field theory without the 

trapping of 9. 



In the case A 2 0 we can write p(x) as 

P(X) = &(X - X-)(X - X,) 

where x+,- are two real roots of p(x) = 0 (x+ 2 I-). Notice that at t = 0, 

x(O) = 2 is the ratio of renormalized couplings. If x(O) > A+ then p(x) > 0 and 

X increases with increasing t just as in the case A < 0. We are again back to the 

usual triviality problem. 

For x- < x(O) < x+ (or x(O) < x-), we have p(x) < 0 (P(J) > 0) ad 

X decreases (increases) with increasing t until 1 = I-, an ultraviolet stable fixed 

point. The Landau singularity (and hence the triviality problem) is avoided in this 

case. However, to have a stable vacuum XV > 0 is required. Since I+ 2 x-, the 

requirement of stability translates into two positive roots. In terms of the general 

form of the p-function (eq. (13)) thi s can be fuE.lled only by having B < 0 and 

C > 0 simultaneously. 

Altogether we have the following conditions for a stable and nontrivial theory: 

a) bo 1 0 otherwise g has a Landau singularity 

b) A = B2 - 4C 2 0 to have two real roots 

c) B<O 

d) C>O 

Conditions (c) and (d) are necessary for two positive roots. Note that these con- 

ditions link group properties with combinatorics of diagrams at the same time in 

different ways. In the large N limit eq. (12) gives immediately B = 3 - 3 = $! > 0 

in conflict with condition c) above. From that, we conclude that, in the large N 

limit, the gauged O(N) scalar field theory without fermions does not help to avoid 

the triviality problem. This is well known (see for example [7]). 

Let us now include fermions which are taken, for simplicity and in analogy with 

the standard model, to be in the vector representation (just as with the scalars). 

Let those fermions be c&al as well. Let nf be the number of fermion multiplets 

which can be arbitrarily large. For definiteness, we take the left handed fermion 
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fields to be non-singlets under O(N) and their right-handed partners to be singlets. 

The couplings of + to the fermions are given by 

Lcy = ~gf~~~w~ + h.c. , (15) 
1 

where 

mfi 
gfi=z ’ 

The RG equation governing the evolution of X is in the large N limit 

0’4 

~=~[“‘-(“~2-~~~i)h+ay4-~9~;] . 07) 

It follows that p(x) now becomes 

[i2+(;++)2-3)~+;-,(~)4] . (18) 

We also have 

large N 

b. = T(N - 2) - $zf - ; 4 ;N- ;nf (19) 

If only light fermions exist, i.e. < 1, conditions a) to d) above give: 

a) y<y 

b) %<+~ or =$$<3 

c) ?>a 

Condition (d) is always true. The only allowed range is ;$ E ] w, y [ where 

the existence of upper and especially lower bounds for the number of fermions is 

interesting. For these values of 3 the roots A+,- are to a very good approximation 

given by 

x+=lBl-;; X-=i. (20) 
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The highest A+ and lowest I- both occur for the highest value of 3 : 

XT 21 2.72 ; ,i”‘” 5 0.28 . (21) 

In consequence the upper bound on x(O) is now $ 5 2.72. Notice, however, 

that these upper bounds are representation dependent. Only in the case 3 E 

1 
& 11 

4 , T with these upper bounds being respected is the triviality problem 
1 

avoided. 

If heavy fermions are allowed (in analogy with the standard model) then the 

result is modified. For simplicity, let us assume that there are nh ( 5 nf ) 

degenerate heavy fermions and all others being light. We then have 

c (!A)” =nhz; T(Y)’ =np2 , 
i 

(22) 

Cf 2 where z = ( g ) . The conditions a) to d) with free parameters I and n,~, give now: 

a) 2 < 9 as before 

b) (~-~;Sfnh2)2-3+4nh”2~o 

c) +g+nnhz<o 

d) ; - nhz2 2 0 

In Fig. 1 the resulting bounds in (3, ) p z s ace are shown graphically for various nh. 

Note that at this point the scale dependence of z was not taken into account. To do 

so is easy if we recognize that the condition for a running I is that the parameter 

does not run out of the original stability region in Fig. 1. Since nonabelian gauge 

fields are included the Yukawa couplings can be driven to zero for high scales if the 

initial values are small enough. Different authors have shown (see e.g. [5]) that sf 

decreases faster than any gauge coupling, i.e. z = (%) + 0 for 1 + 00. Note that 

the requirement of this fixed point can induce separate upper bounds on gf (and 

therefore mf) which are not discussed here. 

Taking into account that I runs to its tixedpoint the allowed regions in Fig. 

1 have to be reduced by those areas where a decreasing I + 0 at constant ;$ 
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runs out of the allowed region. In Fig. 1 the remaining allowed areas are shown 

shadowed. As a result 3 has to be at least in the same area as for n,+ = 0. If a 

finite t is used the lower bound for ;$ increases to a somewhat higher value. For 

high no, the lower bound for 3 can be driven for the highest allowed E value to 

the upper bound of 3 ( see Fig. 1). If nh increases (maybe n.h - N) the allowed 

range for z is squeezed and finally only t = 0, 2 E ] w, 9 [ is left over like in 

the case nh = 0. In all cases condition d) gives an upper bound on z which can be 

translated into an upper bound on the fermion mass: 

(23) 

This condition holds for all scales* and in particular at t = 0. With the definition 

< + >= v we obtain** 

(24) 

where mf = (gf)ll v and m2, = igi v2. The roots I+,- equivalent to eq. (20,21) 

are now changed. The maximum value for x+ is now taken for C = $ - nhz2 = 0, 

where the upper bound for the fermion masses is saturated. Note that in this 

case I- = 0 corresponds to an asymptotically free A. We have then I+ = IBI = 

i;$ - y - nh z which is still maximal for the mtimal value of ;$ = y. For smsll 

nh this can be written as I+ = lBI = 3 - @. Overall, the maximum value for 

A+ under variation of nh is x+ 5 3. Using m$ = AR v2 and m& = igi IJ~ wee 

obtain 

*For a particular 3 condition b) gi ves for nh 2 2 sometimes stronger bounds. 

But if ;$ is free eq. (23) is an absolute upper bound on z. 

** Notice that upper bounds on fermion masses can also be obtained from the 
requirement of vacuum stability of an effective potential (Ref. [S]). The present 

bound is tied, in addition, to the non-triviality of the theory. 
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In summary the problems of the O(N1) x O(N2) example showed how triviality 

should be avoided and that both gauging the group and coupling to fermions are 

helpful in this respect. Concentrating on the large N equivalent of SSB in the stan- 

dard model several conditions had to be met in order for the setup to be consistent 

and stable. Consistency, i.e. avoiding triviality, and stability lead to conditions 

where group properties are linked to combinatoric factors in different ways. Having 

gauge bosons alone did not remove the problem. Yukawa couplings alone are not 

allowed because their RGE have no ultraviolet fixedpoint. The combined picture 

with gauge bosons and the right amount of fermions finally works. It is interest- 

ing to see that nonabelian gauge bosons are needed for two reasons. The gauge 

couplings are themselves asymptotically.free and they produce asymptotically free 

Yukawa couplings. The Yukawa couplings are needed since the gauge bosom alone 

do not remove the triviality problem. In this sense the formal asymmetry of SSB 

is removed. Scalars are invented to break the symmetry and a balance of gauge 

bosons and fermions is needed to stabilize this picture. Surprisingly this stabi- 

lization also leads to a situation where all gauge, Higgs and Yukawa couplings are 

simultaneously asymptotically free. 

Several bounds can be derived out of the consistency and stability requirements. 

There are upper bounds for X in terms of g2. If sll free parameters are allowed to 

vary the bound rn~ <_ & rn~ is obtained. The number of fermions is restricted to 

beatleastintheintervall]~,~[ x N allowing an estimate of the necessary 

nf for finite N: nf 2: 5N. Finally there exist upper bounds on the fermion masses 

determined by stability: nf 5 ($) ’ mu. We noted that additional restrictions 

for mf typically arise once the Yukawa couplings are studied in detail and their 

asymptotic behaviour is taken into account. 

This treatment allows a systematic understanding of results for similar models 

with finite N. It especially explains the persistence of triviality problems far away 

from this bounds. Although N = 2 for the standard model is probably not close to 

a large N situation it is interesting to translate the results to this case. 

One of us (P.Q. H) would like to thank the Fermilab Theory Group, where part 
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3 4 4.6.. 5 n/N 

3 4 4.6.. 5 d-J 

3 4 4.6.. 5 w/N 

3 4 4.6.. 5 *t/N 

Fig. 1 

The bounds in (2, 2) space for different nh. Condition (a) gives ;$ < y. 

(d) gives the horizontal dash-dotted line. The dashed line is a lower bound for ;$ 

from (c) with rq, = 0. For the actual value of rq, (c) gives the more restrictive 

dotteded line. Finally (b) excludes the values inside of the solid curve. When the 

scale dependence of z is included the shadowed areas remain as allowed values. 
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